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Abstract

A ®nite element unit cell model for investigation of arbitrary loading conditions is developed for composites with
periodic arrangements of continuous aligned ®bers. Special emphasis is placed on the formulation of the boundary

conditions to allow for simulation of all modes of overall deformation arising from any arbitrary combination of
mechanical and electrical loading. The model is applied to piezoelectric composites whereby the overall elastic,
dielectric, as well as piezoelectric moduli are fully extracted. The boundary conditions are validated for elastic in-

plane shear loading and checked by recourse to comparisons with analytical bounds as well as semianalytical
bounds and experimental investigations for piezoelectric composites from the literature. Aspects of ®ber
arrangement and di�erences between piezoelectric ceramic as well as polymer matrix composites reinforced with

piezoelectric ®bers are discussed. 7 2000 Published by Elsevier Science Ltd.

Keywords: Boundary conditions; Composite materials; Fiber reinforced; Finite element; Homogenization; Micro mechanics;

Modeling; Piezoelastic

1. Introduction

Piezoelectric materials have been successfully used in the past decades as transducers, sensors, and
micro-actuators. Fibrous composites show lower mechanical losses than monolithic materials. They are
also candidate materials for use as sensors to assess the structural integrity and damage tolerance of
load-bearing structures such as airplane wings. For such applications, the materials are typically loaded
within the linear regime. It is of interest to know the overall coupled electro-mechanical behavior and
the local ®elds in the constituent phases, as well as the response under complex loading conditions.
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A number of methods have been developed to predict and simulate the linear coupled piezoelectric
and mechanical behavior of composites. Basic analytical approaches have been reported, e.g. Chan and
Unsworth, 1989; Smith and Auld, 1991, which are not capable of predicting the response to general
loading, i.e. they do not give the full set of overall moduli. Semianalytical and Hashin/Shtrikman-type
bounds for describing the complete overall behavior (i.e. all elements of the material tensors) have been
developed (Bisegna and Luciano, 1996, 1997) which are useful tools for theoretical considerations.
However, the range between the bounds can be very wide for certain overall (i.e. bulk) moduli.
Mechanical mean ®eld type methods have been extended to include electroelastic e�ects (Benveniste,
1993; Dunn and Taya, 1993; Wang, 1992; Chen, 1993) based on an Eshelby-type solution for a single
inclusion in an in®nite matrix (Benveniste, 1992; Dunn and Wienecke, 1997). Such mean ®eld type
methods are capable of predicting the entire behavior under arbitrary loads. However, they use averaged
representations of the electrical and mechanical ®elds within the constituents of the composite, i.e. they
do not account for the local ¯uctuations in ®eld quantities. This restriction can be overcome by
employing periodic micro®eld approaches (commonly referred to as unit cell models) where the ®elds are
typically solved numerically with high resolution, e.g. by the ®nite element method (Gaudenzi, 1997). In
such models the representative unit cell and the boundary conditions are designed to capture a few
special load cases which are connected to speci®c deformation patterns (e.g. Brockenbrough and Suresh,
1990; BoÈ hm, 1993; Gunawardena et al., 1993; Cleveringa et al., 1997). This allows the prediction of only
a few of the key material parameters; for example, only normal loads can be applied consistently using
the symmetry boundary conditions.

To the knowledge of the authors, the only unit cell models which capture the entire behavior correctly
so far have been reported by Teply and Dvorak (1988) and recently by Smit et al. (1998). Presumbly
correct boundary conditions are employed in Reisner et al. (1998), Bisegna and Luciano (1997),
although no details are given. A di�erent method which can handle arbitrary loading scenarios is the so
called asymptotic homogenization approach (Suquet, 1987). For two-dimensional cases within the context
of masonry the set of boundary conditions is given by Anthoine (1995) and Luciano and Sacco (1997).

The aim of this paper is to account for local ¯uctuations of the ®elds and to predict the full set of
material moduli, i.e. to determine the complete tensors associated with the overall elastic, dielectric and
piezoelectric behavior. This means that the linear response to any mechanical and electrical load, or any
combination of both, will be determined. Such a comprehensive ®nite element unit cell model is
developed and the coupled linear piezoelectric and elastic behavior of unidirectional continuous ®ber
composites is investigated. Periodic hexagonal and square ®ber arrangements (see e.g. Brockenbrough
and Suresh, 1990; BoÈ hm, 1993) are examined for piezoelectric ®bers belonging to the 6/mm crystal class
(see e.g. Nye, 1957; IEEE, 1978). The sixfold axes (in terms of crystal symmetry) are the longitudinal
axes of the ®bers embedded in a dielectric matrix material. The ®nite element code (ABAQUS, 1996) is
used, which is based on a displacement/electric potential formulation and provides an option for linear
fully coupled piezoelectric material behavior. Once the entire behavior is determined, further parameters
used for characterization, such as the coupling factors (IEEE, 1978), can be calculated because they are
directly related to the moduli.

The validity of the comprehensive unit cell model is proven by predicting the in-plane shear response
of a transversally isotropic elastic composite using two di�erent load scenarios: one relying on the
comprehensive boundary conditions, the other modeling simple shear by employing standard symmetry
boundary conditions. Aspects of ®ber arrangements are discussed. The di�erences between piezoelectric
composites and monolithic materials as well as poled and unpoled ®ber materials are addressed.
Theoretical bounds and experimentally evaluated material data reported in the literature on the overall
behavior are compared with the results of the present approach.

It is noted that the approach introduced in this work is not limited speci®cally to piezoelectric
problems, but can be applied to unit cell investigations in general, e.g. for thermo-elasto-plastic
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simulations. In addition to the homogenization procedure (extracting the overall behavior), localization
can be performed with high accuracy, i.e. the local inhomogeneous ®elds can be obtained for an
arbitrary overall load. This means the present model is suited for generating the input necessary for
Dvorak's Transformation Field Analysis (Dvorak, 1992), in which information on the interrelation
between overall and local behavior is required. The procedures presented in the current paper can also
be applied to more complex unit cells with periodic boundary conditions, such as the random
microstructures considered in Nakamura and Suresh (1993) or Moulinec and Suquet (1994).

2. Constitutive equations

2.1. General relations and notation

In a piezoelectric material, the elastic and the dielectric responses are coupled. The coupled linear
constitutive equations can be given in tensor notation as,

sij � CE
ijklekl ÿ eijkEk

Di � eiklekl � keijEj
, �1�

where sij and ekl are the second rank stress and strain tensors, respectively. Di and Ej denote the vectors
of the electric ¯ux density (or electric displacement) and the electric ®eld (or ®eld strength), respectively.
The latter is the negative gradient of the electric potential, Ei � ÿ@f=@xi: In the case of coupled
material laws, the moduli must be given under speci®ed conditions, such as C E

ijkl denoting the fourth
rank elasticity tensor for zero electric ®eld, and keij denoting the second rank tensor of the electric
permeabilities for zero strain; ®nally eijk is the appropriate third rank piezoelectric coupling tensor.

Instead of the above tensor notation, matrix notation (see e.g. Nye, 1957) can be employed to
represent Eq. (1) as,�

sss
D

�
�
�

CE ÿeT

e ke

��
eee
E

�
, �2�

where the stress and strain tensors are represented by the vectors of their components,

sss �

0BBBBBB@
s11
s22
s33
s23
s13
s12

1CCCCCCA, eee �

0BBBBBB@
e11
e22
e33
2e23
2e13
2e12

1CCCCCCA: �3�

The vectors and tensors, respectively, of E, D, and kkke remain unchanged with respect to Eq. (1). The
matrix of piezoelectric moduli is composed from the tensor elements as,

e �
0@ e111 e122 e133 e123 e113 e112
e211 e222 e233 e223 e213 e212
e311 e322 e333 e323 e313 e312

1A, �4�

and the elements of the elasticity matrix are

CE
ab � CE

ijkl, �5�
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where the subscripts a and b, respectively, are deduced from ij and kl, respectively, as 11 4 1, 22 4 2,
334 3, 234 4, 134 5, 124 6; and the symmetries ab = ba, ij = ji, kl = lk hold.

The superscript T denotes the transpose of a matrix. In the most general case there exist 21 elastic, 6
dielectric, and 18 piezoelectric material constants which are mutually independent.

In the previous equations the stresses are combined with the electric ¯ux density and the strains with
the electric ®eld, respectively. There is no restriction to this particular assignment; in fact, for other
applications the following set of equations might be of advantage;�

sss
E

�
�
�

CD ÿhT

ÿh bbbe

��
eee
D

�
, �6�

where CD is the elasticity matrix for zero electric displacement, bbbe is the inverse of the permeability
tensor for zero strain in Eq. (2), and h is the appropriate piezoelectric coupling matrix. Equivalent
relations as given in Eqs. (4) and (5) hold for CD and h, respectively.

Two more sets of equations are given by the inverse relations of Eqs. (2) and (6), respectively. However, a
simple matrix inversion of the 9 � 9 matrices containing the material moduli is not possible, since these
composed matrices do not represent tensors. There exist a number of relations between the various
tensors and their elements which are given in the literature. Also the relations equivalent to Eqs. (4) and
(5) appear in a modi®ed version (where selected elements are multiplied by factors), see e.g. IEEE, 1978.

In general, elastic dielectric material behavior can be obtained by setting the piezoelectric moduli e =
h = 0, i.e. removing the coupling, see Eqs. (1), (2) and (6).

It is noted that the ®nite element program, ABAQUS (1996), relies on Eqs. (1) and (2) because it is
based on a displacement formulation. This point and the following section serve as the basis for
discussion of the applications given below, as elaborated in greater detail in subsequent discussion.

2.2. Restriction to certain crystal classes

In the present work constituent materials and composites are considered both of which can be
described by the constitutive equations of 6 and 4/mm crystals1, respectively (see e.g. Nye, 1957; IEEE,
1978). Six mm crystals show a transversally isotropic behavior and a rotation with respect to their
poling axis alters neither their mechanical nor electrical response. For 4/mm crystals this holds true for
the piezoelectric and dielectric behavior but not for the elastic behavior.

Letting the poling axes coincide with direction 3 the expanded notation of Eq. (6) for a 4/mm crystal
reads0BBBBBBBBBBBB@

s11
s22
s33
s23
s13
s12
E1

E2

E3

1CCCCCCCCCCCCA
�

0BBBBBBBBBBBBB@

CD
11 CD

12 CD
13 � � � � � ÿh31

CD
12 CD

11 CD
13 � � � � � ÿh31

CD
13 CD

13 CD
33 � � � � � ÿh33

� � � CD
44 � � � ÿh51 �

� � � � CD
44 � ÿh51 � �

� � � � � CD
66 � � �

� � � � ÿh51 � bbbe11 � �
� � � ÿh51 � � � bbbe11 �
ÿh31 ÿh31 ÿh33 � � � � � bbbe33

1CCCCCCCCCCCCCA

0BBBBBBBBBBBB@

e11
e22
e33
2e23
2e13
2e12
D1

D2

D3

1CCCCCCCCCCCCA
, �7�

1 Due to the nature of piezoelectricity which requires a perovskite structure (i.e. the lack of a center of symmetry), these two crys-

tal classes are those with the highest degree of symmetry, in which this phenomenon can occur (Nye, 1957).
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where the number of independent moduli compared to the most general case reduces from 21 to 6
elastic, from 6 to 2 dielectric, and from 18 to 3 piezoelectric parameters; note the multiple appearance of
some elements.

For 6/mm crystals, the in-plane shear modulus is a function of the in-plane Young's modulus and
Poisson ratio. In terms of Eq. (7) this reads,

CD
66 �

CD
11 ÿ CD

12

2
, �8�

and the number of mutually independent elastic moduli is further reduced to 5. The number of dielectric
and piezoelectric moduli remains unchanged.

2.2.1. Material symmetry of the composites
This work is focused on piezoelectric ®bers belonging to the crystal class 6/mm, such as BaTiO3 and

PZT. The ®ber properties are invariant with respect to rotation about their longitudinal axis (the poling
axis) and corresponding orientations of the ®bers have no in¯uence on the overall symmetry and
behavior of the composite. It should be noted that this would not hold true for ®bers belonging to the
4/mm crystal class.

In an analogous way to the behavior of crystals, the overall behavior of inhomogeneous materials is
strongly determined by their overall symmetry, which can be described by the same formalism. For a
regular hexagonal arrangement of the ®bers (which has a six-fold axis of symmetry with respect to the
®ber direction) a transversally isotropic composite results, to be described by the constitutive equation
of a 6/mm crystal. A regular square arrangement (with a four-fold symmetry axis) gives rise to a
tetragonal behavior, to be described by the constitutive equation of a 4/mm crystal.

3. The comprehensive unit cell model

The aim of this section is to present a comprehensive unit cell model which is capable of predicting
the complete set of material moduli for continuous ®ber reinforced composites with periodic
microstructures. This requires an extension of the standard unit cell models used for investigating such
classes of composites.

Within the context of displacement formulated ®nite element approaches the mechanical degrees of
freedom are the three displacement components; the electrical degree of freedom is the electric potential.
Their derivatives with respect to the spatial coordinates are the strains and the negative electric ®eld,
respectively. Thus, the formulation of the constitutive behavior as given in Eqs. (1) and (2) is well suited
for displacement oriented ®nite element methods. It is noted that commercially available ®nite element
software, i.e. ABAQUS (1996), is used which is based on a strain energy approach; the complementary
approach is not considered within the present paper. Once the mechanical boundary conditions are
known, the introduction of the electric boundary conditions is straightforward because they follow the
same rules but on a level which is one degree less complex.

For modeling continuous ®ber composites, generalized plane strain2 models are typically employed
which is an extensively used and widely accepted approach (see, e.g., Brockenbrough and Suresh, 1990;
BoÈ hm, 1993). A periodic arrangement of ®bers can be represented by a rectangular unit cell showing

2 Here, generalized plane strain means that the normal strain in the direction perpendicular to the modeling plane is constant

throughout the model.
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two quarters of the ®ber cross section at opposite corners and using symmetry boundary conditions (i.e.
forcing the boundaries to remain straight and parallel to its initial con®guration). Modifying the
dimensions of the unit cell and the boundary conditions, di�erent (periodic) ®ber arrangements have
been investigated such as clustered and distorted topologies (BoÈ hm and Rammerstorfer, 1995). In
addition, unit cells with up to 60 randomly located ®bers (Nakamura and Suresh, 1993) also combined
with periodic boundary conditions (Moulinec and Suquet, 1994) have been reported. However, such
models are restricted to certain loading conditions.

One of the objectives of this work was to overcome the restrictions to speci®c load cases by
introducing an extended (rectangular) unit cell model. To enable the modeling of shear deformation in
the plane transverse to the ®bers the representative volume element and the boundary conditions must
be chosen with care. It will be shown later that a certain design of the unit cell is required which is
di�erent from the standard models. Since the deformations along a boundary between two corners are
not known a priori (except for some special load cases), the boundary conditions must allow for the
adjustment to the deformation in an appropriate manner. Special care must been taken to avoid over-
or under-constraining. It is noted, that a uniform displacement along the boundary (according to shear
strain in a homogeneous material) as used by Cleveringa et al. (1997) is not proper under general
loading conditions for a composite.

3.1. Representative unit cell

Fig. 1 shows a regular hexagonal arrangement of continuous ®bers embedded in a matrix. An element
which captures the total geometric information is indicated by the solid line. Note that this element
shows a center of symmetry with respect to the middle ®ber. If this element is repeated periodically in
the horizontal and vertical directions (that is by translation), the in®nite repeating ®ber pattern can be
reproduced. For general loading conditions periodic boundary conditions (to be introduced below) must
be used to describe the displacements and the electric ®eld. The same information is obviously captured
by the element outlined with the long dashed line (Fig. 1). This invariance with respect to translations
allows the representative element to be reduced by 50% without loss of information. Thus, the unit cell
as used in the present work is obtained as given by the dotted perimeter.

By changing the horizontal or vertical spacing between the ®bers periodic hexagonal arrangements
and square arrangements in diagonal orientation can be realized; compare the unit cells for hexagonal

Fig. 1. Cross section of a periodic hexagonal ®ber arrangement; basic cell of periodicity (solid and long dashed line) and the present

unit cell (dotted line).
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arrangements in Fig. 1 (dotted) and for square arrangements in Fig. 2 (note the di�erence in the aspect
ratio of the unit cells). The latter contains implicitly the behavior of the square arrangement in edge
orientation. Since the material tensors will be known completely when employing the present model, a
coordinate transformation can be performed. In addition, ®ber arrangements of adjustable ``skewness''
can be realized by changing the aspect ratio of the unit cell.

3.2. Boundary conditions

The ®nite element discretization of the square arrangement is shown in Fig. 2. The boundary
conditions apply for this as well as for the hexagonal unit cell model. Throughout the present work
isoparametric ®nite elements with linear interpolation functions are used. The nodes indicated by circles
are the ``master nodes'' which control the overall behavior of the model. In all other nodal
displacements at the boundaries the appropriate conditions of periodicity must be incorporated and be
linked to the master nodes in terms of equations. The degrees of freedom along the vertical sides are
connected by periodic boundary conditions, i.e. the shape of both sides must match each other exactly.
For the nodes R and S in Fig. 2 this reads in terms of the master nodes A and B,

uR ÿ uA � uS ÿ uB, �9�

where u stands for any of the degrees of freedom, i.e. u1, u2 and u3 for the displacements as well as f
for the electric potential. Using the node A as the ®xed node (i.e. uA = 0) gives rise to,

uS ÿ uB ÿ uR � 0: �10�

For the horizontal boundary the invariance with respect to translation is utilized. The degrees of
freedom at the upper left half (e.g. for the node T ) are expressed in terms of the lower right part (node
U ) and the master nodes as,

uT ÿ uD � uU ÿ uE or uT ÿ uD ÿ uU � uE � 0, �11�

where the degree of freedom of node E follows from the central symmetry of the large volume element
in Fig. 1 as,

Fig. 2. Bottom view of the unit cell for the periodic square arrangement designed for modeling ®ber volume fractions from 20 to

65% with 5% resolution; master nodes (w) for controlling the deformation and auxiliary nodes (�) used in the text for describing

the boundary conditions.
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uE � uB ÿ uA

2
: �12�

Equivalent relations can be given for relating the upper right to the lower left part, and for the node F.
Out-of-plane shear deformation (shear in the ®ber direction) can be introduced either by a more

general formulation of the strain state at the level of the ®nite element de®nition (Adams and Crane,
1984) or by using a 3D model employing appropriate boundary conditions. The latter approach is
adopted in the present work, where instead of the 2D model a ``slice model'' is used whose thickness in
®ber direction is just one element. Thus, Fig. 2 actually shows the ``bottom plane'' of the 3D model.
Another master node at the top plane, �A (not shown), is de®ned with the same x1 and x2 coordinates as
node A, which controls the normal strain in ®ber direction. All other nodes on the top plane are
connected to their counterparts on the bottom plane by appropriate equations. The out-of-plane
displacement and the electric potential for any pair of nodes Y and �Y follow a periodicity condition,

uY ÿ u
�Y � uA ÿ u

�A for u � u3, f, �13�

and the in-plane deformations for all nodes including �A read,

u
�Y � uY for u � u2, u3: �14�

It is noted again that Eqs. (9)±(12) are also valid for the out-of-plane deformations along the
boundaries.

The out-of-plane strain in general reads as,

2ei3 � @u3
@xi
� @ui
@x3

with i � 1, 2 �15�

The boundary conditions as chosen in Eqs. (13) and (14) imply that @ui
@x 3
� 0 without loss of generality.

At the master nodes deformations can be prescribed according to the homogeneous overall strains
and the reaction forces acting on these nodes may be related to overall stresses by the unit cell cross
sections or vice versa. Local stress ¯uctuations at the boundaries are self equilibrated because of the
boundary conditions and do not contribute to the overall stress.

Symmetry boundary conditions often employed to simulate uniaxial loading are implicitly contained
in the present model as a simpler subset.

The scalar valued electric potential follow the same conditions, even more since the degree of
complexity is reduced by one order compared to the vector valued displacements. The validity of the
present boundary conditions is discussed in the next section. It is noted that periodic boundary
conditions are applicable for any cell providing compatibility of the corresponding faces.

4. Applications and discussion

The comprehensive unit cell model is applied to purely elastic as well as piezoelectric composites.
Various investigations are performed in order to assess the validity of the model. Comparisons to
theoretical bounds and experimental results from the literature for the e�ective piezoelastic behavior are
carried out.
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4.1. Elastic composites

4.1.1. Comparison to bounds
At ®rst the purely elastic behavior is investigated and the overall moduli resulting from the present

model are compared to the analytical Hashin/Shtrikman (HS) bounds for transversally isotropic
materials (Hashin, 1983). The constituent material data from Bisegna and Luciano (1997) are adopted,
see Table 1; the dielectric and the piezoelectric moduli are neglected for the purely elastic considerations.
A composite with 40% volume fraction of ®bers is investigated for periodic square arrangements in edge
(SQE) as well as diagonal (SQD) orientation and hexagonal arrangements (HEX), respectively; the ®ber
cross section is circular. The predicted overall moduli are listed in Table 2, where, in addition, the upper
and lower HS bounds are given.

The hexagonal arrangement gives rise to transversally isotropic overall behavior and can be compared
to the HS bounds directly. All moduli predicted by the unit cell fall within these rigorous bounds. The
transverse Young's modulus, E1, is close to the lower bound, which is the typical behavior when the
®bers are sti�er than the matrix. The longitudinal Young's modulus, E3, is in excellent agreement with
the bounds which are very tight for this case (the di�erence is below the displayed accuracy).

The transverse shear modulus, G12, is close to the lower bound and the longitudinal shear modulus,
G13, is in agreement with its lower bound. It is noted that of the three transverse moduli, E1, n12, and
G12, only two are mutually independent for transversally isotropic material behavior.

In addition to the results for the hexagonal arrangement, the values for the square arrangements are
displayed in Table 2. The same e�ective behavior is given with respect to two di�erent coordinate
systems, i.e. the axes are oriented along the diagonal directions (SQD) and along the edge directions
(SQE), respectively, of the square arrangement morphology. Since the square ®ber arrangements do not
show transversally isotropic overall material symmetry but have tetragonal symmetry, the results need
not comply with these bounds, and the Poisson ratios can be greater than 0.5. For the in-plane moduli
(which are now mutually independent) a marked direction-dependence is observed. This behavior
depends on whether or not there exist continuous matrix regions which are loaded in such a way that no
distinct reinforcing e�ect can occur in this regions (Moulinec and Suquet, 1994; BoÈ hm and
Rammerstorfer, 1995); e.g. under pure in-plane shear along the edge direction there are wide
``unreinforced'' regions. Under pure shear along the diagonal, however, such regions are markedly
narrower (at a given volume fraction) and a sti�er behavior results.

Table 1

Material data for the piezoelectric ®bers (PZT-7A) and the dielectric matrix (epoxy) after Bisegna and Luciano (1997)

PZT-7A Epoxy

CE
11 (GPa) 154.837 8.0

CE
33 (GPa) 131.39 8.0

CE
12 (GPa) 83.237 4.4

CE
13 (GPa) 82.712 4.4

CE
44 (GPa) 25.696 1.8

CE
66 (GPa) 35.800 1.8

kkke11 (nC/Vm) 4.065 0.0372

kkke33 (nC/Vm) 2.079 0.0372

e31 (C/m
2) ÿ2.120582 ±

e33 (C/m
2) 9.521830 ±

e51 (C/m
2) 9.349593 ±
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4.1.2. Validation of boundary conditions
The hexagonal arrangement provides a powerful tool for validating the present unit cell approach

with respect to the boundary conditions. Since this arrangement shows transversally isotropic behavior
the in-plane shear modulus is independent of the orientation within the plane transverse to the ®bers.
The in-plane shear response can be determined by applying only normal loading such that s11 � ÿs22,
which corresponds to pure shear in the 458 direction. The resulting strain tensor represents pure shear in
that direction and the shear modulus is determined. Alternatively, the capability of the present model is
used to simulate pure shear such that s12 is the only non-zero stress component. This yields exactly the
same value for the shear modulus and, thus, proves the validity of the present model. Note that the
latter procedure requires a consistent formulation of the boundary conditions, in order not to over- or
under-constrain the unit cell. Fig. 3 shows the deformation mode where overall pure shear is applied as,

2e12 � @u1
@x2
� @u2
@x1

: �16�

All features with respect to the boundary conditions as described in the previous section can be
observed, i.e. the periodicity along the vertical edges and the invariance with respect to translation along
the horizontal edges. The applied boundary conditions also become obvious in Fig. 4, where pure shear
is applied in ®ber direction, 2e23, according to Eq. (15). Note that the top and bottom 1±3 planes and
the side 2±3 planes remain plane despite the fact that no such constraints are imposed by the boundary
conditions. It is noted that for this special load case the right or the left half of the present unit cell
alone would be su�cient.

Table 2

Predicted elastic e�ective Young's moduli, Poisson ratios, and shear moduli for hexagonal (HEX), square diagonal (SQD), and

square edge (SQE) ®ber arrangements compared to the Hashin/Shtrikman bounds (HS) for 40 vol% of circular ®bers

HEX SQD SQE HS

E1 (GPa) 10.38 9.39 11.84 10.24/16.79

E3 (GPa) 32.49 32.49 32.49 32.50/32.50

n12 0.448 0.502 0.372 ±

n13 0.351 0.352 0.352 ±

G12 (GPa) 3.85 4.32 3.13 3.51/5.54

G13 (GPa) 3.72 3.74 3.74 3.72/8.08

Fig. 3. Predicted deformation of the hexagonal unit cell representing 40 vol% of ®bers under overall pure in-plane shear.
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In both Figs. 3 and 4 the local distribution of the deformations can be observed under transverse and
axial shear loading, respectively. It is interesting to note that in both ®gures central symmetric
deformation patterns are exhibited in both the left and the right half of the model. This indicates that
the representative unit cell could be reduced again by 50% obtaining the upper or lower pentagonal
shapes sketched by the dotted line in Fig. 1 (as well as introducing additional point symmetry boundary
conditions and a proper de®nition of the master nodes). In fact, the inclination of the notch (or ``the
roof'') does not matter as long as the center points of the left and right half (marked with circles in
Fig. 1) are part of it. For example, the PHA model by Teply and Dvorak (1988), which comprises a
triangular cross section with corners at the ®ber centers, is capable of modeling general deformation in a
correct manner.

Correct behavior (with respect to all possible modes of deformation) cannot be captured by the left
or the right half of the unit cell alone. Note the deformation modes of ``barreling'' and ``inverse
barreling'', respectively, of both halves in Fig. 3. The interaction between these two halves is
necessary to represent the correct behavior (and cannot be modeled by special boundary conditions
on one of such halves).

Fig. 4. Predicted deformation of the hexagonal unit cell representing 40 vol% of ®bers under overall pure out-of-plane shear.
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4.2. Piezoelectric composites

4.2.1. Comparison to bounds
The predictions by the present model are compared to bounds for piezoelectric composites taken from

the literature. Bisegna and Luciano (1996, 1997) derive analytical and semianalytical methods for
bounding the complete set of the e�ective properties for continuous ®ber reinforced composites, where a
periodic square arrangement and square shaped ®ber cross sections are assumed. Selected semianalytical
results from Bisegna and Luciano (1997) for 60% volume fraction of ®bers are given in Table 3, i.e. the
``BL bounds'' which, with the exception of CD

33, are the tightest among the given bounds, and the
Hashin/Shtrikman-type (HS-type) bounds. The constituent material data used in Bisegna and Luciano
(1997) are given in Table 1, in a form corresponding to Eq. (2).

Employing the present unit cell model, composites with circular ®bers arranged in periodic hexagonal
and square topologies are considered. The latter arrangement also is modeled with square ®ber cross
sections within the present approach, so that the edge direction of the ®bers and the edge direction of
the arrangement topology coincide3. The complete sets of the predicted overall elastic, dielectric, and
piezoelectric material data for a ®ber volume fraction of 60% are given in Table 3.

Direct comparison is possible for the given bounds and the values for the square shaped ®ber cross
section (SQEq) of the present unit cell approach. All results of the present model comply with both sets
of bounds. Since the sti�nesses are given in terms of Eq. (7), there are piezoelectric coupling e�ects
involved in these ``elastic'' values and the relation between the bounds and the unit cell results are
di�erent from the purely elastic example in the previous section.

Note that the crucial point for calculating such bounds is the choice of appropriate reference
materials. Their values chosen in Bisegna and Luciano (1997) for the sti�ness and piezoelectric behavior
are close to the material data for the matrix and the ®bers, respectively (which is in accordance to the
choice for analytical HS-bounds (Hashin, 1983)). The dielectric properties of the more compliant
reference material, however, deviate considerably from the data of the matrix. This is the reason for the

Table 3

Predictions for the complete set of piezoelectric e�ective properties for hexagonal (HEX), square diagonal (SQD), and square edge

(SQE) ®ber arrangements for circular (w) and quadratic (q) ®ber cross-sections compared to the tightest bounds available (BL) and

Hashin/Shtrikman-type bounds (HS-type) from Bisegna and Luciano (1997) for 60 vol% of ®bers

HEXw SQDw SQEw SQDq SQEq BL HS-type

CD
11 (GPa) 22.41 21.62 25.19 21.05 25.42 25.2/25.5 24.9/28.7

CD
33 (GPa) 86.91 87.10 87.10 86.98 86.98 76.1/87.0 79.0/87.8

CD
12 (GPa) 10.51 12.33 8.76 12.23 7.86 7.72/8.15 5.00/12.0

CD
13 (GPa) 10.53 10.84 10.84 10.64 10.64 8.89/12.3 6.12/16.5

CD
44 (GPa) 6.34 6.70 6.70 6.51 6.51 6.45/6.52 6.40/7.67

CD
66 (GPa) 5.95 8.22 4.64 8.78 4.41 4.39/4.41 4.37/4.92

bbbe11 (GVm/C) 6.809 6.341 6.341 6.572 6.572 6.57/6.66 2.54/6.73

bbbe33 (GVm/C) 0.780 0.780 0.780 0.780 0.780 0.730/0.844 0.742/0.951

h31 (GV/m) ÿ0.150 ÿ0.157 ÿ0.157 ÿ0.153 ÿ0.153 ÿ0.337/0.024 ÿ1.03/0.719
h33 (GV/m) 5.039 5.034 5.034 5.037 5.037 3.91/5.42 3.63/5.85

h51 (GV/m) 0.289 0.330 0.330 0.311 0.311 0.229/0.384 ÿ1.92/2.67

3 The unit cell is modi®ed by biasing the nodes, but keeping the mesh topology exactly the same. This way, the boundary con-

ditions (and their implementation) remain unchanged.
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(relatively) wide bounds in Bisegna and Luciano (1997) on the piezoelectric coupling moduli and on the
sti�ness in ®ber direction, unlike in the purely elastic case.

4.2.2. In¯uence of ®ber arrangement and ®ber geometry
In addition, Table 3 shows the in¯uence of the ®ber arrangement, the ®ber cross section, and the

orientation of the reference coordinate system on the predicted e�ective material behavior. In general,
the overall behavior of the composite in ®ber direction is insensitive with respect to the topology. The
in-plane sti�ness behavior, expressed by C D

11, C
D
12, and C D

66, shows a marked dependence on orientation
and arrangement. The reason for this behavior is the same as for the purely elastic case discussed in the
previous section. For the ®bers with square cross sections the continuous ``unreinforced'' regions become
even more extreme and, consequently, the deviation of the material parameters is wider. The
piezoelectric coupling has minor in¯uence on this in-plane behavior because the corresponding value,
h31, is very small.

As can be seen from Table 3 the piezoelectric and dielectric behavior of the square arrangements is
invariant with respect to in-plane rotations (compare Section 2). The in-plane dielectric, bbbe11, and
piezoelectric moduli, h31, as well as the out-of-plane shear piezoelectric modulus, h51, show a noticeable
dependence on the ®ber arrangement.

For a discussions on the e�ects of the inclusion geometry and arrangements for mechanical cases, see
Shen et al. (1995), BoÈ hm and Rammerstorfer (1995), and Weissenbek et al. (1994).

4.2.3. Poled vs. unpoled ®bers
Further predictions by the present unit cell model for the square arrangement in diagonal orientation

for 60% volume fraction of circular ®bers are displayed in Table 4. The overall moduli are given in
terms of Eq. (2), i.e. under zero electric ®eld and zero strain, for the case of poled and unpoled
piezoelectric ®ber material. For the constituents in both cases the elastic data, CE, and the dielectric
data, kkke, respectively, are taken to be the same. The piezoelectric coupling is set to e � 0 for the unpoled
case.

The sti�ness values characterizing the normal behavior of the composite, CE
11, CE

33, C12E, and CE
13, do

not depend on the poling of the ®bers. Overall normal strains would be suited to induce an electric ®eld
in ®ber direction, but this is prevented due to the loading conditions assuming zero electric ®eld along
the continuous ®bers. However, an applied electric ®eld in this direction under zero strain gives rise to

Table 4

Predictions for the complete set of e�ective piezoelectric material data for square diagonal ®ber arrangements for 60 vol% of poled

and unpoled circular ®bers �CE and CD denoting the elastic moduli for zero electric ®eld and zero electric displacement,

respectively)

SQDw Unpoled Poled Poled From Table 3

CE
11 (GPa) 21.584 21.616 CD

11

CE
33 (GPa) 54.595 87.100 CD

33

CE
12 (GPa) 12.298 12.330 CD

12

CE
13 (GPa) 11.855 10.839 CD

13

CE
44 (GPa) 5.996 6.679 6.696 CD

44

CE
66 (GPa) 8.216 8.216 CD

66

kkke11 (nC/Vm) 0.155 0.158 0.158 1=bbbe11
kkke33 (nC/Vm) 1.262 1.282 1.282 1=bbbe33
e31 (V/m) 0 ÿ0.202 ± ±

e33 (V/m) 0 6.455 ± ±

e51 (V/m) 0 0.052 ± ±
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di�erent longitudinal permeabilities, kkke33, for poled and unpoled ®bers. Finally, for transverse shear no
coupling at all is present, neither for the ®ber material nor the composites under consideration.

It is noted, that the previous considerations are made for continuous ®bers belonging to the 6 mm
crystal classes. Of course, materials with a lower degree of symmetry would give rise to a more complex
dependence on ®ber arrangement and ®ber orientation.

4.2.4. Monolithic piezoelectric material vs. composite
For monolithic piezoelectric materials, the elastic response under zero electric ®eld is equivalent to the

elastic response for the unpoled material. However, this does not hold true for the ®ber composites
under longitudinal shear deformation, 2e13 (and 2e23). In that case, the piezoelectric coupling in the
®bers induces a local ¯uctuating electric ®eld E1�x� even though the far ®eld is zero4. Fig. 5 shows this
micro®eld under pure shear of 2e13 � 0:1: This micro®eld, in turn, in¯uences the shear behavior, CE

44, of
the coupled piezoelectric composite. Of course, such an interaction cannot occur in the unpoled case.
For the overall dielectric behavior transverse to the ®bers, kkke11, an inverse e�ect can be observed. Despite
the fact that the overall strain is zero, local strain ®elds are induced in the poled ®bers which a�ect the
overall electric ¯ux density. The overall coupling moduli in Table 4 also show some interesting features
owing to piezoelectric ®ber composites. The coupling moduli e31 and e41 are at least one order of
magnitude lower than for the ®ber material. These moduli prescribe the coupling under loading
situations which are commonly referred to as matrix-dominated deformation modes. In such cases the
compliant matrix accommodates almost all overall strains and the ®bers experience low strains, so that
the piezoelectric e�ect does not act in a pronounced manner. A high value is found for the overall

Fig. 5. Predicted local electric ®eld E1 under overall pure out-of-plane shear and overall zero electric ®eld for 60 vol% of ®bers in

square diagonal arrangement.

4 Such considerations can be made by means of Eq. (11) applied to the local ®elds in the ®bers.
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piezoelectric modulus in the ®ber direction, e33, because the continuous ®bers are forced to carry the
overall strain.

The e�ect of the overall behavior is also obvious, when comparing CE to CD (appropriate data from
Table 3 are displayed again). It is noted that the latter data can also be calculated from the left hand
side of Table 4. The only value which shows a marked deviation is C�33 which is due to the in¯uence of
e33:

4.2.5. Comparison with experiments
Experimentally evaluated overall material data for piezoelectric ®ber composites are presented by

Chan and Unsworth (1989). The constituent moduli for the PZT-7A ®bers and the Araldite D matrix
are given in Table 5. In order to complete the data set, additional values are taken from Dunn and
Taya (1993) (marked with �). Based on the overall behavior predicted by the present model the coupling
constants as given in Chan and Unsworth (1989),

kt �
�����������������
1ÿ CE

33

CD
33

s
, kp �

�����������������������
1ÿ kkke33CD

33

kkks33CE
33

s
, �17�

are evaluated. Fig. 6 displays these values as function of the ®ber volume fraction together with the
experimentally obtained results from Chan and Unsworth (1989). For the predicted values of kp, a mild
in¯uence of the ®ber arrangement (HEX or SQD) is observed for higher volume fractions. For such
cases the interaction of neighboring ®bers depends on the ®ber spacing which is di�erent for the
arrangements considered here. The predictions for kt are independent of the ®ber arrangement within
the investigated range of the volume fraction. The results predicted by the present approach are lower
than the experimental values; however, Chan and Unsworth report that the nominal values of the
constituents (as used in the present work) were found to deviate from the actual values. The trends
shown by the experimental values are captured very well by the present model. It should be noted that
the non-monotonic change of kp with respect to the volume fraction cannot be predicted by the simpler
model by Chan and Unsworth, despite the fact that only constituent properties in ®ber direction are
involved.

Table 5

Material data for the piezoelectric ®bers (PZT-7A) and the dielectric matrix (Araldite D) after Chan and Unsworth (1989), and

Dunn and Taya (1993) �)

PZT-7A Araldite D

CE
11 (GPa) 148.0 8.0

CE
33 (GPa) 131.0 8.0

CE
12 (GPa) 76.2 4.4

CE
13 (GPa) 74.2 4.4

CE
44 (GPa) 25.4 � 1.8

CE
66 (GPa) 35.9 1.8

kkke11 (nC/Vm) 4.065 � 0.0354

kkke33 (nC/Vm) 2.079 0.0354

e31 (C/m
2) ÿ2.1 ±

e33 (C/m
2) 9.5 ±

e51 (C/m
2) 9.2 � ±
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5. Conclusions

A comprehensive unit cell model is developed for studying composites with periodic hexagonal or
square arrangements of continuous ®bers by means of the ®nite element method. The boundary
conditions giving rise to consistent behavior under arbitrary mechanical and electrical loading conditions
are discussed in detail and checked for the elastic and piezoelastic cases. The comprehensive unit cell
model is an extension of the widely used standard models, but it relieves the restrictions of the standard
models to some speci®c loading modes. The model can be applied to simulate any loading mode and
loading path in nonlinear composites. In addition to the capability of predicting the complete set of
overall composite properties, the local ®elds arising in response to arbitrary homogeneous overall loads
can be obtained with high resolution.

In the present work piezoelectric composites are considered with a dielectric matrix material and fully
coupled piezoelectric ®bers. The complete set of overall moduli is predicted for various ®ber
arrangements and ®ber cross sections. These results are compared to (semi)analytical bounds from the
literature, where agreement is found for all moduli when considering identical microstructures. A
marked in¯uence of the ®ber arrangement on the overall behavior is found for the elastic and dielectric
properties transverse to the ®bers, and the piezoelectric modulus which couples the electric ®eld with
shear deformation. The overall dielectric behavior changes depending on whether or not the ®bers are
poled; with respect to the elastic behavior only the longitudinal shear modulus is altered. For the
composites a pronounced piezoelectric coupling e�ect is found only in ®ber direction. The coupling
transverse to the ®bers is very weak due to the accommodation of transverse strains mainly in the
matrix. Data for experimentally evaluated coupling constants from the literature compare satisfactory
with the predictions. The dependence on the ®ber volume fraction is also predicted very well.
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